
Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 1

Security Issues© 2001 Barton P. Miller January 21, 2001

Neither a Borrower nor a Lender Be:
The Dangers of Mobile Code

Barton P. Miller
bart@cs.wisc.edu

Computer Sciences Department
University of Wisconsin

Madison, Wisconsin 53705
USA

– 2 – Security Issues© 2001 Barton P. Miller

1. Subverting running programs
It’s easy; we have a nice toolkit.

2. Safety checking of binary programs
Given and interface spec and the machine code,

verify safety conditions.

3. Safe remote execution of my job
The Condor or Java applet scenario.

4. An infrastructure for safe mobile computing.
Make mobility easier, while allowing the sysadmin to

retain control.

Four Security Topics

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 2

– 3 – Security Issues© 2001 Barton P. Miller

Dynamic Instrumentation
❑Does not require recompiling or relinking

• Saves time: compile and link times are
significant in real systems.

• Can instrument without the source code (e.g.,
proprietary libraries).

• Can instrument without linking (relinking is not
always possible.

❑Instrument optimized code.

– 4 – Security Issues© 2001 Barton P. Miller

Dynamic Instrumentation (con’d)
❑Only instrument what you need, when you need

• No hidden cost of latent instrumentation.
• Enables “one pass” tools.

❑Can instrument running programs (such as
Web or database servers)
• Production systems.
• Embedded systems.
• Systems with complex start-up procedures.

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 3

– 5 – Security Issues© 2001 Barton P. Miller

The Basic Mechanism
Application

Program
Application

Program

Function fooFunction foo

TrampolineTrampoline

Pre-InstrumentationPre-Instrumentation

RelocatedRelocated
InstructionInstruction

Post-InstrumentationPost-Instrumentation

– 6 – Security Issues© 2001 Barton P. Miller

The DynInst Interface

❑Machine independent representation
❑Object-based interface to build Abstract

Syntax Trees (AST’s)
❑Write-once, instrument-many (portable)
❑Hides most of the complexity in the API

• Process Hijacker: only 700 lines of user code!
• MPI tracer: 250 lines

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 4

– 7 – Security Issues© 2001 Barton P. Miller

Basic DynInst Operations
❑Process control:

• Attach/create process
• Monitor process status changes
• Callbacks for fork/exec/exit

❑Image (executable program) routines:
• Find procedures/modules/variables
• Call graph (parent/child) queries

– 8 – Security Issues© 2001 Barton P. Miller

Basic DynInst Operations
❑Inferior (application processor) operations:

• Malloc/free
– Allocate heap space in application process

• Inferior RPC
– Asynchronously execute a function in the

application.
• Load module

– Cause a new .so/.dll to be loaded into the application.

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 5

– 9 – Security Issues© 2001 Barton P. Miller

Basic DynInst Operations
❑Inferior operations (continued):

• Remove Function Call
– Disable an existing function call in the application

• Replace Function Call
– Redirect a function call to a new function

• Replace Function
– Redirect all calls (current and future) to a function

to a new function.

– 10 – Security Issues© 2001 Barton P. Miller

Basic DynInst Operations
❑Building AST code sequences:

• Control structures: if and goto
• Arithmetic and Boolean expressions
• Get PID/TID operations
• Read/write registers and global variables
• Read/write parameters and return value
• Function call

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 6

– 11 – Security Issues© 2001 Barton P. Miller

Applications of DynInst
❑ Process Hijacking (Vic Zandy)

• Submitting already-running jobs to Condor
❑ MPI Tracer (Chris Chambreau)

• Insert Vampir or Pablo trace calls on the fly.
❑ Function Call Tracer (Roland Wismüller)

• Generate dynamic call graph
❑ Image Mentor (Brian Wylie)

• Query module/function/memory structure
❑ Re-Tee (Jeff Hollingsworth)

• Redirect program output on-the-fly
❑ License server bypassing
❑ Condor security attacks

– 12 – Security Issues© 2001 Barton P. Miller

License Server Attack: The Bypass

Program License Data
Network

License

Server

Normal: licensed program runs after communicates with license server.

Program License Data
Network

License

Server

Undesired: licensed program refuses to run if license server does not respond.

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 7

– 13 – Security Issues© 2001 Barton P. Miller

Example: Adobe FrameMaker
Two-step license verification:

• retrieve license data from server [once]
• check license data for correctness [often]

In practice:
• allow FM to time-out waiting for server
• allow FM to attempt to go into “demo” mode
• switch FM back to normal mode
• insure that future license checks always

succeed

– 14 – Security Issues© 2001 Barton P. Miller

Strategies
❑Complete reverse engineering:

• not an option
– legal problems
– complexity (FrameMaker is a 7 MB binary!)

❑Focus on certain characteristics:
• I/O (network sockets) traffic
• execution trace

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 8

– 15 – Security Issues© 2001 Barton P. Miller

Tools
❑High-level language translators:

• Dyner: interactive, interpreted C subset
• Jdyninst: Java to DynInst compiler

❑Bypasser: an interactive call graph browser
• Search and walk application call graph
• Resolves function pointers at runtime
• Call follow caller or callee paths
• Can generate call trace

– 16 – Security Issues© 2001 Barton P. Miller

Use
❑Determining where to apply changes:

• get trace for a successful run
• get trace for a (forced-)failure run
• compare to find differences
• repeat as needed

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 9

– 17 – Security Issues© 2001 Barton P. Miller

Details
❑FM calls NlOpenlicenses on start up

• Contacts license server and caches credential
if successful

❑At end of main, and calls NluiCheckLicense
• If credential is not present, call
ChangeProductToDemo (cannot save files)

❑Frequently, during operation, FM will check
for cached credentials.

– 18 – Security Issues© 2001 Barton P. Miller

Details
❑FM calls NlOpenlicenses on start up

• Contacts license server and caches credential
if successful

• Allow this to fail.
❑At end of main, and calls NluiCheckLicense

• If credential is not present, call
ChangeProductToDemo (cannot save files)

❑Frequently, during operation, FM will check
for cached credentials.

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 10

– 19 – Security Issues© 2001 Barton P. Miller

Details
❑FM calls NlOpenlicenses on start up

• Contacts license server and caches credential
if successful

• Allow this to fail.
❑At end of main, and calls NluiCheckLicense

• If credential is not present, call
ChangeProductToDemo (cannot save files)

• Delete the call to ChangeProductToDemo.
❑Frequently, during operation, FM will check

for cached credentials.

– 20 – Security Issues© 2001 Barton P. Miller

Details
❑FM calls NlOpenlicenses on start up

• Contacts license server and caches credential
if successful

• Allow this to fail.
❑At end of main, and calls NluiCheckLicense

• If credential is not present, call
ChangeProductToDemo (cannot save files)

• Delete the call to ChangeProductToDemo.
❑Frequently, during operation, FM will check

for cached credentials.
• Change this call to always return “true”.

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 11

– 21 – Security Issues© 2001 Barton P. Miller

Condor Attack: Lurking Jobs
❑Condor schedules jobs on idle workstations
❑In a normal mode, jobs run as a common, low-

privilege user ID: “nobody”.
❑This common user ID provides an opportunity

for an evil lurking process to ambush
subsequent jobs (from other users):

– 22 – Security Issues© 2001 Barton P. Miller

Condor Job Structure

Submitting HostSubmitting Host

Shadow Process

Execution HostExecution Host

User Jobsystem calls

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 12

– 23 – Security Issues© 2001 Barton P. Miller

Condor Job Structure

Submitting HostSubmitting Host

Shadow Process

Execution HostExecution Host

Evil
User Job

system calls

Lurker
Process

forkfork

– 24 – Security Issues© 2001 Barton P. Miller

Condor Job Structure

Submitting HostSubmitting Host Execution HostExecution Host

Lurker
Process

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 13

– 25 – Security Issues© 2001 Barton P. Miller

Condor Job Structure

Submitting HostSubmitting Host

Shadow Process

Execution HostExecution Host

Innocent
User Job

system calls

Lurker
Process

– 26 – Security Issues© 2001 Barton P. Miller

Condor Job Structure

Submitting HostSubmitting Host

Shadow Process

Execution HostExecution Host

Innocent
User Job

system calls

Lurker
Process

attach

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 14

– 27 – Security Issues© 2001 Barton P. Miller

Condor Job Structure

Submitting HostSubmitting Host

Shadow Process

Execution HostExecution Host

Innocent
User Job

system calls

Control remote
system calls

Lurker
Process

rm -rf *

– 28 – Security Issues© 2001 Barton P. Miller

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 15

– 29 – Security Issues© 2001 Barton P. Miller

2. Safety Checking of Binary Code

❑ Is it safe for untrusted foreign code to be loaded into
a trusted host system?

Host

Untrusted
Code

Data Code

Code producer

Code consumer

– 30 – Security Issues© 2001 Barton P. Miller

Safety Properties We Enforce

❑Default collection of safety conditions
• No type violations
• No out-of-bounds array accesses,
• No misaligned loads/stores,
• No uses of uninitialized variables,
• No invalid pointer dereferences,
• No unsafe interaction with the host

❑Precise and flexible host access policy
• Customizable

Type safety

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 16

– 31 – Security Issues© 2001 Barton P. Miller

Motivation
❑Dynamic extensibility

• Operating systems: custom policies, general
functionality, performance
– Extensible OS: exokernel, VINO, SPIN,

synthetix...
– Commodity OS: SLIC, kerninst, ...

• Databases: type-based extensions
– Illustra, informix, paradise, ...

• Web browsers: plug-ins
• Performance tools: measurement code

– Kerninst, paradyn, ...
• Active network components

– 32 – Security Issues© 2001 Barton P. Miller

Motivation

❑Component-based software (Java, COM)
• Software components from different vendors

are combined to construct a complete application
• Code from several sources with no mutual trust

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 17

– 33 – Security Issues© 2001 Barton P. Miller

High-Level Characteristics
❑ Perform safety checking on ordinary binary,

mechanically synthesize (and verify) a safety
proof

❑ Extend the host at a very fine-grained level
(allow the untrusted code to manipulate the
internal data structures of the host directly)

❑ Enforce host-specified access policy + type
safety

– 34 – Security Issues© 2001 Barton P. Miller

❑Classify locations into regions
As big as the entire address space, as small as a

variable
❑ [Region : Category : Access]

• Category: Types, fields
• Access:

readable (r),
writable (w),
followable (f),
executable (e),
operable (o)

(e.g., to “copy”, to “examine”)

Host-Specified Access Policy

Locations

Values

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 18

– 35 – Security Issues© 2001 Barton P. Miller

Protections Provided by Access Policy

Initial inputs to the untrusted code

callTree List

Methods

Host

call

call

rf

rf

rw

rw

rw

rw

rw

call

call

call

x

– 36 – Security Issues© 2001 Barton P. Miller

❑Kernel page-replacement extension
• Pick a cold page from global LRU list.
typedef struct _page_list {

int page;
...
struct _page_list * next;

} page_list;

[Host : page_list.page : ro]
[Host : page_list.next, page_list ptr : rfo]

Principle of “Least Privilege”

// read access
// follow access

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 19

– 37 – Security Issues© 2001 Barton P. Miller

3. Safe Remote Execution of My Job

My job is executing on a remote host of unknown
pedigree.

Threats:
• Can I trust the requests that are being made from

the remote job to my home host?
• Can I trust the results that are being calculated

by the remote job?

– 38 – Security Issues© 2001 Barton P. Miller

Condor Job Structure

Submitting HostSubmitting Host

Shadow Process

Execution HostExecution Host

User Jobsystem calls

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 20

– 39 – Security Issues© 2001 Barton P. Miller

Three Approaches

1. Filtering: screen out dangerous requests
• Sandboxing: restrict particular syscalls, do a

chroot, restrict host access.
• Behavioral profiling, ala intrusion detection: use

past behavior to screen future requests.

This technique addresses the threat to the home
host, but not the data integrity problem.

– 40 – Security Issues© 2001 Barton P. Miller

Three Approaches

2. Replication
• Byzantine-like replication to detect and tolerate

malicious modifications.
• Similar techniques to detect and tolerate malicious

remote requests.

Addresses both threats, but at a high cost.

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 21

– 41 – Security Issues© 2001 Barton P. Miller

Three Approaches

3. “Slippery” jobs and “Crystal” jobs
• Design the program/process so that it is hard to

get a handle:
– System defensive techniques from worm technology.
– Code transformations to keep the code unrecognizable.

• Slippery: cannot get a meaningful hold on the job.
• Crystal: is doesn’t bend, but it shatters

– Any modification is likely to destroy, rather than subvert
the job.

This area is in the crazy-idea stage. Stay tuned!

– 42 – Security Issues© 2001 Barton P. Miller

4. Ubiquitous Mobility
❑Ordinary applications, in execution, that move

as:
• User moves to a new computer
• Computer moves to a new location

❑No modifications to apps, OS, or network
• Built on common existing infrastructure

❑Security policy set by administrator, not user
❑Everything is mobile

• Network connections, GUIs, I/O

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 22

– 43 – Security Issues© 2001 Barton P. Miller

At my desk

Remote
Host

Office Network

Laptop

TCP

Office Desktop

– 44 – Security Issues© 2001 Barton P. Miller

Onto my laptop (802.11b)

Remote
Host

Office Network

Compressed
TCP

Laptop

Office Desktop

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 23

– 45 – Security Issues© 2001 Barton P. Miller

Onto my laptop (low speed wireless)

Remote
Host

Office Network

Laptop

Encrypted
Low-Power

Compressed
TCP

Office Desktop

– 46 – Security Issues© 2001 Barton P. Miller

At home (802.11b)

Remote
Host

Laptop

Office Network Home Network

Encrypted
Compressed

TCP

Office Desktop

Home Desktop

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 24

– 47 – Security Issues© 2001 Barton P. Miller

Onto my home desktop (DSL/cable)

Remote
Host

Laptop

Office Network Home Network

Encrypted
TCP

Office Desktop

Home Desktop

– 48 – Security Issues© 2001 Barton P. Miller

Components for Ubiquitous Mobility
❑Reliable Sockets

• Mobile, fault-tolerant network connections
❑Network Proxy

• Secure and mobile network connections with
unmodified correspondents

❑GUI Proxy
• Mobile user interfaces

❑I/O Proxy
• Remote file access, based on Condor shadow

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 25

– 49 – Security Issues© 2001 Barton P. Miller

Follow-Ups:
Dyninst Release 1.3:

• Runs on Solaris (SPARC & x86), Windows NT,
AIX/SP2, Linux (x86), Irix (MIPS),Tru64 Unix.
http://www.cs.wisc.edu/paradyn

❑Papers on dyninst, process hijacking, static
safety checking:
http://www.cs.wisc.edu/paradyn/papers

– 50 – Security Issues© 2001 Barton P. Miller

Back-Up Slides
Static safety checking of binary code

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 26

– 51 – Security Issues© 2001 Barton P. Miller

Experimental Evaluation
❑Test cases

Array sum, start/stop timer, b-tree, kernel paging policy,
hash, bubble sort, heap sort, stack-smashing, MD5, jPVM,
/dev/kerninst (symbol, loggedWrites)

❑Summary of Results
• Found safety violations in kernel policy, stack-smashing,

/dev/kerninst
• Verified all conditions, except for some calls in MD5,

jPVM (precision lost due to inability to detect that a loop
‘kills’ all elements of an array)

• Checking times vary from 0.1 to 30 seconds

– 52 – Security Issues© 2001 Barton P. Miller

Characteristics of Test Cases

S
um

Pa
gi

ng
Po

lic
y

S
ta

rt
 T

im
er

H
as

h

Bu
bb

le
S

or
t

S
to

p
Ti

m
er

Bt
re

e

Bt
re

e2

H
ea

p
So

rt
 2

H
ea

p
So

rt

S
ta

ck
-s

m
as

hi
ng

jP
VM

/d
ev

/k
er

ni
ns

t
/s

ym
bo

l

/d
ev

/k
er

ni
ns

t
/l

og
ge

dW
ri

te
s

M
d5

Instructions 13 20 22 25 25 36 41 51 71 95 309 315 339 358 883

Branches 2 5 1 4 5 3 11 11 9 16 89 16 45 36 11

Loops
(Inner)

1 2(1) 0 1 2(1) 0 2(1) 2(1) 4(2) 4(2) 7(1) 3 6(4) 6 5
(2)

Procedure
Calls
(Trusted)

0 0 1(1) 1 0 2(2) 0 4 (4) 3 0 2
40
(40)

36
(25)

48
(12) 6

Global
Safety
Conditions
(Bounds
Checks)

4
(2) 9 13 15

(2)
16
(8) 17 35

(14)
39
(14)

56
(26)

84
(42)

100
(74)

99
(18)

116
(42)

192
(40)

121
(30)

Source
Language

C C C C C C C C C C C
C in
C++
style

C++ C++ C

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 27

– 53 – Security Issues© 2001 Barton P. Miller

Timing (Seconds)

Su
m

Pa
gi

ng
Po

lic
y

St
ar

t
Ti

m
er

H
as

h

Bu
bb

le
So

rt

St
op

 T
im

er

Bt
re

e

Bt
re

e2

H
ea

p
So

rt
 2

H
ea

p
So

rt

St
ac

k-
sm

as
hi

ng

jP
VM

/d
ev

/k
er

ni
ns

t
/s

ym
bo

l

/d
ev

/k
er

ni
ns

t
/l

og
ge

dW
ri

te
s

M
d5

Typestate
Propagation

0.02 0.05 0.02 0.04 0.04 0.03 0.09 0.11 0.17 0.15 0.69 3.05 4.88 15.4 5.92

Annotation 0.003 0.005 0.005 0.006 0.005 0.007 0.008 0.01 0.015 0.015 0.03 0.069 0.068 0.26 0.082

Range
Analysis

0.01 0 0 0.01 0.03 0 0.03 0.04 0.08 0.12 0.54 0.24 0.68 0.95 1.24

Induction-
Iteration

0.08 0.18 0.13 0.40 0.18 0.14 0.40 0.035 1.15 2.46 12.74 1.55 8.60 12.33 3..41

TOTAL 0.1 0.23 0.16 0.46 0.26 0.18 0.53 0.51 1.42 2.75 14.0 4.91 14.2 28.94 10.65

– 54 – Security Issues© 2001 Barton P. Miller

Limitations
❑ Can only ensure safety properties that can be

expressed using typestates + linear constraints
• e.g., cannot handle nonlinear array subscripts

❑ Induction iteration method is incomplete
• e.g., generalization capability is limited

❑ Limitations in handling of arrays
• Lost precision

❑ Inherited limitations of static techniques
• Must reject code that cannot be checked statically
• Otherwise, there is the recovery problem

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 28

– 55 – Security Issues© 2001 Barton P. Miller

Safety Checking: Related Work

❑Dynamic Techniques:
• Hardware enforced

address spaces, SFI,
interpretation, etc.

❑Hybrid Techniques
• Safe languages: Java,

ML, Modula 3, etc.

Runtime cost
Potential recovery
problem

❑Static Techniques
• Proof-Carrying Code

[Necula, Lee]
• Certifying Compiler,

Typed-Assembly
Language
[Necula, Lee]
[Morrisett, Walker, Crary,
Glew, ...]
[Colby, Lee, Necula, Blau]

– 56 – Security Issues© 2001 Barton P. Miller

Safety Checking: Related Work

Certifying
Compiler

Safe C, Java, ML C, C++
Pointer Arithmetic,...

Machine
Code

Proof

Proof
Checker

Yes/No

Ordinary
Binary

Annotated
initial inputs

Safety
Checker

Yes/No

Off-the-Shelf
cc, gcc, as

C, C++, Assembly, ...

Safety Policy,
Initial inputs

<<

Security Issues
Barton P. Miller

21 January 2001

© 2001 Barton P. Miller 29

– 57 – Security Issues© 2001 Barton P. Miller

Safety Checking: Related Work

Certifying
Compiler

Safe C, Java, ML C, C++
Pointer Arithmetic,...

Machine
Code

Proof

Proof
Checker

Yes/No Yes/No

C, C++, Assembly, ...

Ordinary
Binary

Proof
generator

Off-the-Shelf
cc, gcc, as

Safety Policy,
Initial inputs

Ordinary
Binary

Proof

Proof
Checker

